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of a spherical shell 

The relationship (4.2) should be added to (6.2). We then obtain a system of equations 
and boundary conditions to determine UO, wo, T,, T,, M,, M,. It is often conven- 
ient to integrate this system directly in the form presented here; In some cases it is ex- 
pedient to eIiminate the static factors by means of (4.2). Consequently, we obtain a 

system of two equations in Uo, wo. It is expedient to use it if purely geometric condin 

tions are given. On the basis of the boundary value problems obtained, the influence of 
the lack of shallowness and of the physical nonlinearity on the critical state of the shell 
can be investigated in particular. 
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The construction of error estimates of approximate theories of plates is based on inequa- 
lities relating the three-dimensional elastic energy of the plate and the elastic energy 
according to a two-dimensional approximate theory. 

The inequality 
(1) 

has been proved in [l] in the case of extension of an isotropic homogeneous linearly 
elastic plate of constant thickness h . Here R is the three-dimensional elastic energy, 
W, are the tangential com~nents of the displacement vector, zu is the displacement 

along the normal to the plate ( l ) , E, is the elastic energy by the theory of the plane 

*) For the extension w,is an even and w is an odd function of the transverse coordinate 
x, while for bending w, is an odd, and w an even function of x. 
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state of stress, and u, are the tangential displacements averaged over the thickness 

u,= $ 

h/z 

a 
WE dx 

- 1% 
The asymptotic accuracy of the theory of the plane state of stress is proved in [l]for 

h + 0 by using (1). Naturally it would be expected that an analogous inequality 

EK (u) < E (w, wa) (2) 

holds for plate bending, where 8~ is the elastic energy by Kirchhoff theory, and u is 

the transverse displacement averaged over the thickness. However, inequality (2) is in- 
correct (*). This is easily seen by setting wa = 0, w = u (za) , for example (Xx are 
the coordinates in the plate middle plane), Then the quadratic form ~2~/~~a~xp is in 
the left side of the inequality, and ~u/~Xa in the right. As is known, it is impossible to 
find the upper bound of the second derivatives of functions in terms of the first in the 

norm I&. It turns out that the elastic energy En of the Reissner model yields the exact 
upper bound of the three-dimensional elastic energy of a bent plate 

where 

h! 2 h ‘2 

qu. = 1 xwadx / 1 xadx 
-h, 2 -h/z 

(4) 

This paper is devoted to a proof of the inequality (3) and some estimates resulting 
from this inequality. 

Let Q denote the middle plane of the plate, I’ the boundary of Q , V the domain 
occupied by the plate 

61=(X, x~:x’F:Q, -hf2<x<h/22) 

and U the internal energy per unit volume of the plate 

E = i Udxl dx2 dx 
V 

The internal energy u for a linearly elastic isotropic homogeneous plate is defined by 
the formula 

2i7 =I h (eaa)’ + @&,p&@ + 2hE&,% + (h + 2p,) 8% + +E,E’ (5) 

aw 
EC@ = Zo(a, B)r Err%, 

Here the comma before the Greeksubscriptsdenotes differentiation with respect to Xec, 

and the parentheses in the subscripts is the symmetrization operation. 
The elasticity energy of the Reissner model is given by the relations 

* ) For this reason, D. Morgenstern apparently had to apply a method of proof different 
from that which he used in the theory of the plane sta e of stress [l] m order to prove 
the asymptotic accuracy of the Kirchhoff hypotheses 121. 
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The estimate of the elastic energy (3) for continuously differentiable functions W, Wa 

results from the following inequalities : 
I*. Let &denote the quantities 

Then the Cauchy-Buniakowski inequality 

~~~a~s:E.E.d~~~(~(xz - ~~dx~~~~~~adx (6) 

Evidently 
hia 

1 
a,= -Pj- 

SC - 12 

~+~)(ra-~)dx=-~(u‘~+~~) (7) 

Sub~ituting (7) into (6), we obtain 
his 

2”. From the Cauchy-Buniakowski inequaliq, the definition of $P from (4) and 
the definition of a,p from (5), we have 

h/z his 

; (9~~)~ G 1 (Eaa)2dx, g $ta,D#ae fif G 5 ~&j~ (9) 
-h/Z -h/2 

3”. The inequality 

- &P (Eaay2 < 2h&,“& + (h + 2/J) E2 (10) 

is evident. Replacing the terms 2X?,% + (h + 21.+s by the smaller quantity 

(a,=W2 I (A + 2p) in the internal energy u , integrating over the domain V and 
substituting e,,@ and E&FP which do not exceed their magnitude, in place of the inte- 

grals of (E,~)~ with respect to x according to (8) and (9). we arrive at the inequality 
(3). The inequality (3) is exact. The equality sign holds in (3) for example, for func- 
tions of the form (U (a?) is an arbitrary harmonic function): 

w = u (xa), w, = - u,, x (&+&= 0) 
The enrgy estimate of the error in the approximate Reissner theory can be constructed 

by using the inequality (3). In order not to make the exposition of the technical details 
unwieldy, let us consider the volume forces to be absent, and let us take the simplest 
boundary conditions : zero surface forces for x= -& h / 2, and on the edge of the plate 
s = {z, za : i-c= EI_ r, - h i 2 < x f h / 2) the displacements are given as 

wl,=u,+&tr (x2 - 2)) wa Is = w- + v 1 erax (x2 _ ?$) (11) 
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where ur7 XI-, $f, Ora are known functions on the contour r. 
Thebxact solution of the problem is given by the minimizing the element w*, w,* 

of the functional E in the set of functions w, w, which satisfy the boundary conditions 
(11). and the approximate solution by minimizing the element u**, &** of the func- 

tional EH in the set of functions U, $, satisfying the boundary conditions 

It is assumed that the minimizing functions are continuously differentiable. We find the 

error in the Reissner theory by the method of two-sided estimates. This method has been 

used in plate theory in [l - 33. The method of two-sided estimates consists of establish- 
ing inequalities of the form 

ER (u**, qa**) < ER (u*, I&*) G E (w*, w,*) 4 ER (u**, $a**) + F (13) 

where u* and $L* are defined as functions of w*, wa* by (4). By virtue of the iden- 
tity ER (u** - u, q&** - $a) = ER (u, +a) - ER (u**, $a”*) 

which holds for any functions u, $, taking the same values on I? as do u**, $,**, 

the desired estimate 
ER(~**-u*, $x**-+ab)< F (14) 

results from (13). Therefore, there remains to prove (13) and to obtain an expression for 

F. The second inequality in (13) results from the inequality (3) proved above, and the 
first from the fact that U* and 9, * belong to the set of functions by which the func- 

tional ER is minimized, and ER (u**, $=**) is its minimal value. To construct the 

upper bound E (w*, wa*) , let us consider the value of the functional E in displace- 
ment fields of the form 

w=u+&(z’-&) (15) 

We obtain [4] 

(16) 

The function u corresponds to the function U* in [4]. 

Let us set u = u**, $a = $),** in (15), (16) and let us still keep the functions X 
and 0, arbitrary, however, for the displacement field (15) to satisfy the boundary condi- 

tions (ll),we subject X and 0, to the constraints 

x J, = &., 8” II’ = Bra (17) 

Then, since the displacement field (15) belongs to the set of functions in which the func- 
tional E is minimized because of the mentioned selection of u, x, qa, 0, , and 

E (w*, wa*) is its minimum value, the third inequality of (13) and the estimate (14) 
hold. The functional F (u**, I#,**, x, 0,) in (13), (14) is defined by (16). The left 
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side in (14) is independent of X, and @,,hence any functions satisfying the boundary 
condition (17), including functions achieving the minimum of the functional F , can be 

taken as X and 8, . In the particular case when XF and f3,a in the boundary conditions 
(11) are selected so that the equalities 

can be taken as ;G and 0, . The functional F hence becomes 

F--_-w-!% 
50 400 s 

’ (h (cf,)Z + 2pq,, b) 8’“’ P)) dx’ ax2 
CT! 

It can be shown that the functional F is of the order of he for ur independent of the 
parameter h and 1 @fool f dz@/& I < ch2 (z, is the vector tangent to r) . How- 
ever_ in the general case when (18) are not true for or and Or” because of the edge 
effect,the functional p is of the order of h4. 

It follows from the estimates obtained that the Reissner model is asymptotically exact 
in the energy norm. Since the Reissner model goes over into the Kirchhoff model as 

h --f 0 , the asymptotic accuracy of the Kirchhoff theory also follows from these estia 
mates. 

In conclusion, let us note that the inequality (3) and the corresponding error estimates 
of the Reissner theory are extended by word-for-word duplication to homogeneous aniso- 
tropic plates of constant thickness which have a plane of elastic symmetry parallel to 

the middle plane at each point. For such plates the elastic energy per unit volume is 

2u =3 A”@’ e.zpeys + 2A”‘~3e + Ae2 + 4GaBqgp 
The inequalities 

h/a 

--his 

must be used in place of inequalities (8) - (lo). It follows from the inequalities (19) 
that an exact lower bound for the elastic energy of a bent anisotropic plate is given by 

the elastic energy ER defined by the formula 

1 
En = 2 

I[ ’ -E EaPvs hG”” (uw-tqa) (u,,B + 2c’o)]~~‘@ 
LA 
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The application of Hankel transforms to the three-dimensional axisymmetric 
problems of the theory of elasticity, in the case when the modulus of elasticity 
is a power function of depth, leads to a system of ordinary differential equations 
[l] whose solution presents some mathematical difficulty. Therefore, in [l, 21 
the solution of these problems has been carried out by applying transformations 

expounded in p]. 
In the sequel we construct the fundamental system of solutions of the ordinary 

differential equations mentioned above and we give the solution for two bound- 

ary value problems in the case of very special conditions. 

1. In the case of axial symmetry, the displacement equations of the theory of elas- 
ticity have the form 

(i,+2P)[$++$-+]+(~+P)~+P$+ 

6P - _%+$]_9 
a2 II 

I++- [ ', -g]+(i.+P)[g ++$]+0+2p)g- 

zi[g_+p]+ a '2;z+i) +o 

We apply the Fourier method, by using the Hankel’s transforms in the following form 
m cc 

u (r, z) = 
5 

cp (s, z) Ji (ST) ds, w (r, z) = 
s 

f (s, z) JO (ST) ds 

0 0 


